Beyond Artificial Reality: Finding and Monitoring Live Events from Social Sensors
With billions of active social media accounts and millions of live video cameras, live new big data offer many opportunities for smart applications. However, the main consumers of the new big data have been humans. We envision the research on live knowledge , to automatically acquire real-time, vali...
Gespeichert in:
Veröffentlicht in: | ACM transactions on Internet technology 2020-03, Vol.20 (1), p.1-21 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With billions of active social media accounts and millions of live video cameras, live new big data offer many opportunities for smart applications. However, the main consumers of the new big data have been humans. We envision the research on
live knowledge
, to automatically acquire real-time, validated, and actionable information. Live knowledge presents two significant and diverging technical challenges: big noise and concept drift. We describe the EBKA (evidence-based knowledge acquisition) approach, illustrated by the LITMUS landslide information system. LITMUS achieves both high accuracy and wide coverage, demonstrating the feasibility and promise of EBKA approach to achieve live knowledge. |
---|---|
ISSN: | 1533-5399 1557-6051 |
DOI: | 10.1145/3374214 |