"You Know What to Do": Proactive Detection of YouTube Videos Targeted by Coordinated Hate Attacks
Video sharing platforms like YouTube are increasingly targeted by aggression and hate attacks. Prior work has shown how these attacks often take place as a result of "raids," i.e., organized efforts by ad-hoc mobs coordinating from third-party communities. Despite the increasing relevance...
Gespeichert in:
Veröffentlicht in: | Proceedings of the ACM on human-computer interaction 2019-11, Vol.3 (CSCW), p.1-21 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Video sharing platforms like YouTube are increasingly targeted by aggression and hate attacks. Prior work has shown how these attacks often take place as a result of "raids," i.e., organized efforts by ad-hoc mobs coordinating from third-party communities. Despite the increasing relevance of this phenomenon, however, online services often lack effective countermeasures to mitigate it. Unlike well-studied problems like spam and phishing, coordinated aggressive behavior both targets and is perpetrated by humans, making defense mechanisms that look for automated activity unsuitable. Therefore, the de-facto solution is to reactively rely on user reports and human moderation. In this paper, we propose an automated solution to identify YouTube videos that are likely to be targeted by coordinated harassers from fringe communities like 4chan. First, we characterize and model YouTube videos along several axes (metadata, audio transcripts, thumbnails) based on a ground truth dataset of videos that were targeted by raids. Then, we use an ensemble of classifiers to determine the likelihood that a video will be raided with very good results (AUC up to 94%). Overall, our work provides an important first step towards deploying proactive systems to detect and mitigate coordinated hate attacks on platforms like YouTube. |
---|---|
ISSN: | 2573-0142 2573-0142 |
DOI: | 10.1145/3359309 |