Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach
In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned...
Gespeichert in:
Veröffentlicht in: | ACM transactions on embedded computing systems 2019-10, Vol.18 (5s), p.1-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!