Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach

In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on embedded computing systems 2019-10, Vol.18 (5s), p.1-20
Hauptverfasser: Yaghoubi, Shakiba, Fainekos, Georgios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.
ISSN:1539-9087
1558-3465
DOI:10.1145/3358239