Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach

In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on embedded computing systems 2019-10, Vol.18 (5s), p.1-20
Hauptverfasser: Yaghoubi, Shakiba, Fainekos, Georgios
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 5s
container_start_page 1
container_title ACM transactions on embedded computing systems
container_volume 18
creator Yaghoubi, Shakiba
Fainekos, Georgios
description In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.
doi_str_mv 10.1145/3358239
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3358239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3358239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-b6a0a9856a7727f4eac64b7039e5b7946cb75691fca763e6364ced32785b8db33</originalsourceid><addsrcrecordid>eNotkE9LwzAchoMoOKf4FXLzVE2a_0cpzglFD90QvJRf0kSqtRlJZPjtdbjT8_IensOD0DUlt5RycceY0DUzJ2hBhdAV41KcHjYzlSFanaOLnD8IoarmYoHeXmPKpXKQPe6gjDmAK2OccQy427S423k3htHB4cx4m8f5Ha-8H0JMe0gDfvbfCaY_lH1Mn7iJc0lxmnzKl-gswJT91ZFLtF09bJp11b48PjX3beWoVqWyEggYLSQoVavAPTjJrSLMeGGV4dJZJaShwYGSzEsmufMDq5UWVg-WsSW6-fe6FHNOPvS7NH5B-ukp6Q9J-mMS9gubY1PW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach</title><source>ACM Digital Library</source><creator>Yaghoubi, Shakiba ; Fainekos, Georgios</creator><creatorcontrib>Yaghoubi, Shakiba ; Fainekos, Georgios</creatorcontrib><description>In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.</description><identifier>ISSN: 1539-9087</identifier><identifier>EISSN: 1558-3465</identifier><identifier>DOI: 10.1145/3358239</identifier><language>eng</language><ispartof>ACM transactions on embedded computing systems, 2019-10, Vol.18 (5s), p.1-20</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c187t-b6a0a9856a7727f4eac64b7039e5b7946cb75691fca763e6364ced32785b8db33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yaghoubi, Shakiba</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><title>Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach</title><title>ACM transactions on embedded computing systems</title><description>In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.</description><issn>1539-9087</issn><issn>1558-3465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE9LwzAchoMoOKf4FXLzVE2a_0cpzglFD90QvJRf0kSqtRlJZPjtdbjT8_IensOD0DUlt5RycceY0DUzJ2hBhdAV41KcHjYzlSFanaOLnD8IoarmYoHeXmPKpXKQPe6gjDmAK2OccQy427S423k3htHB4cx4m8f5Ha-8H0JMe0gDfvbfCaY_lH1Mn7iJc0lxmnzKl-gswJT91ZFLtF09bJp11b48PjX3beWoVqWyEggYLSQoVavAPTjJrSLMeGGV4dJZJaShwYGSzEsmufMDq5UWVg-WsSW6-fe6FHNOPvS7NH5B-ukp6Q9J-mMS9gubY1PW</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Yaghoubi, Shakiba</creator><creator>Fainekos, Georgios</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers</title><author>Yaghoubi, Shakiba ; Fainekos, Georgios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-b6a0a9856a7727f4eac64b7039e5b7946cb75691fca763e6364ced32785b8db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghoubi, Shakiba</creatorcontrib><creatorcontrib>Fainekos, Georgios</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on embedded computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghoubi, Shakiba</au><au>Fainekos, Georgios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach</atitle><jtitle>ACM transactions on embedded computing systems</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>18</volume><issue>5s</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1539-9087</issn><eissn>1558-3465</eissn><abstract>In this paper, a reinforcement learning approach for designing feedback neural network controllers for nonlinear systems is proposed. Given a Signal Temporal Logic (STL) specification which needs to be satisfied by the system over a set of initial conditions, the neural network parameters are tuned in order to maximize the satisfaction of the STL formula. The framework is based on a max-min formulation of the robustness of the STL formula. The maximization is solved through a Lagrange multipliers method, while the minimization corresponds to a falsification problem. We present our results on a vehicle and a quadrotor model and demonstrate that our approach reduces the training time more than 50 percent compared to the baseline approach.</abstract><doi>10.1145/3358239</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-9087
ispartof ACM transactions on embedded computing systems, 2019-10, Vol.18 (5s), p.1-20
issn 1539-9087
1558-3465
language eng
recordid cdi_crossref_primary_10_1145_3358239
source ACM Digital Library
title Worst-case Satisfaction of STL Specifications Using Feedforward Neural Network Controllers: A Lagrange Multipliers Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Worst-case%20Satisfaction%20of%20STL%20Specifications%20Using%20Feedforward%20Neural%20Network%20Controllers:%20A%20Lagrange%20Multipliers%20Approach&rft.jtitle=ACM%20transactions%20on%20embedded%20computing%20systems&rft.au=Yaghoubi,%20Shakiba&rft.date=2019-10-01&rft.volume=18&rft.issue=5s&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1539-9087&rft.eissn=1558-3465&rft_id=info:doi/10.1145/3358239&rft_dat=%3Ccrossref%3E10_1145_3358239%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true