Carpentry compiler
Traditional manufacturing workflows strongly decouple design and fabrication phases. As a result, fabrication-related objectives such as manufacturing time and precision are difficult to optimize in the design space, and vice versa. This paper presents HL-HELM, a high-level, domain-specific language...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2019-11, Vol.38 (6), p.1-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional manufacturing workflows strongly decouple design and fabrication phases. As a result, fabrication-related objectives such as manufacturing time and precision are difficult to optimize in the design space, and vice versa. This paper presents HL-HELM, a high-level, domain-specific language for expressing abstract, parametric fabrication plans; it also introduces LL-HELM, a low-level language for expressing concrete fabrication plans that take into account the physical constraints of available manufacturing processes. We present a new compiler that supports the real-time, unoptimized translation of high-level, geometric fabrication operations into concrete, tool-specific fabrication instructions; this gives users immediate feedback on the physical feasibility of plans as they design them. HELM offers novel optimizations to improve accuracy and reduce fabrication time as well as material costs. Finally, optimized low-level plans can be interpreted as step-by-step instructions for users to actually fabricate a physical product. We provide a variety of example fabrication plans in the carpentry domain that are designed using our high-level language, show how the compiler translates and optimizes these plans to generate concrete low-level instructions, and present the final physical products fabricated in wood. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/3355089.3356518 |