Variance-aware multiple importance sampling

Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2019-11, Vol.38 (6), p.1-9
Hauptverfasser: Grittmann, Pascal, Georgiev, Iliyan, Slusallek, Philipp, Křivánek, Jaroslav
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 6
container_start_page 1
container_title ACM transactions on graphics
container_volume 38
creator Grittmann, Pascal
Georgiev, Iliyan
Slusallek, Philipp
Křivánek, Jaroslav
description Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.
doi_str_mv 10.1145/3355089.3356515
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3355089_3356515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3355089_3356515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</originalsourceid><addsrcrecordid>eNotj01LxDAURYMoWEfXbruXzLyX5DXpUga_YMCNM9vymqZSaWdKUhH_vR3s5p7Fhcs9QtwjrBENbbQmAleuZxaEdCEyJLLS6sJdigysBgka8FrcpPQFAIUxRSYeDhw7Pvog-YdjyIfvfurGPuTdMJ7idG7yxMPYd8fPW3HVcp_C3cKV2D8_fWxf5e795W37uJN-vjBJpbxr2HplSqwtMpaFM8Ta18YoywaoaRjYcQDUYBSBap2xinCO0tR6JTb_uz6eUoqhrcbYDRx_K4Tq7FotrtXiqv8AzWtE0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variance-aware multiple importance sampling</title><source>ACM Digital Library Complete</source><creator>Grittmann, Pascal ; Georgiev, Iliyan ; Slusallek, Philipp ; Křivánek, Jaroslav</creator><creatorcontrib>Grittmann, Pascal ; Georgiev, Iliyan ; Slusallek, Philipp ; Křivánek, Jaroslav</creatorcontrib><description>Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3355089.3356515</identifier><language>eng</language><ispartof>ACM transactions on graphics, 2019-11, Vol.38 (6), p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</citedby><cites>FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grittmann, Pascal</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Slusallek, Philipp</creatorcontrib><creatorcontrib>Křivánek, Jaroslav</creatorcontrib><title>Variance-aware multiple importance sampling</title><title>ACM transactions on graphics</title><description>Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.</description><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj01LxDAURYMoWEfXbruXzLyX5DXpUga_YMCNM9vymqZSaWdKUhH_vR3s5p7Fhcs9QtwjrBENbbQmAleuZxaEdCEyJLLS6sJdigysBgka8FrcpPQFAIUxRSYeDhw7Pvog-YdjyIfvfurGPuTdMJ7idG7yxMPYd8fPW3HVcp_C3cKV2D8_fWxf5e795W37uJN-vjBJpbxr2HplSqwtMpaFM8Ta18YoywaoaRjYcQDUYBSBap2xinCO0tR6JTb_uz6eUoqhrcbYDRx_K4Tq7FotrtXiqv8AzWtE0g</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Grittmann, Pascal</creator><creator>Georgiev, Iliyan</creator><creator>Slusallek, Philipp</creator><creator>Křivánek, Jaroslav</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Variance-aware multiple importance sampling</title><author>Grittmann, Pascal ; Georgiev, Iliyan ; Slusallek, Philipp ; Křivánek, Jaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grittmann, Pascal</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Slusallek, Philipp</creatorcontrib><creatorcontrib>Křivánek, Jaroslav</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grittmann, Pascal</au><au>Georgiev, Iliyan</au><au>Slusallek, Philipp</au><au>Křivánek, Jaroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance-aware multiple importance sampling</atitle><jtitle>ACM transactions on graphics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>38</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.</abstract><doi>10.1145/3355089.3356515</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2019-11, Vol.38 (6), p.1-9
issn 0730-0301
1557-7368
language eng
recordid cdi_crossref_primary_10_1145_3355089_3356515
source ACM Digital Library Complete
title Variance-aware multiple importance sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance-aware%20multiple%20importance%20sampling&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Grittmann,%20Pascal&rft.date=2019-11-01&rft.volume=38&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3355089.3356515&rft_dat=%3Ccrossref%3E10_1145_3355089_3356515%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true