Variance-aware multiple importance sampling
Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect o...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2019-11, Vol.38 (6), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | ACM transactions on graphics |
container_volume | 38 |
creator | Grittmann, Pascal Georgiev, Iliyan Slusallek, Philipp Křivánek, Jaroslav |
description | Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead. |
doi_str_mv | 10.1145/3355089.3356515 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1145_3355089_3356515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1145_3355089_3356515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</originalsourceid><addsrcrecordid>eNotj01LxDAURYMoWEfXbruXzLyX5DXpUga_YMCNM9vymqZSaWdKUhH_vR3s5p7Fhcs9QtwjrBENbbQmAleuZxaEdCEyJLLS6sJdigysBgka8FrcpPQFAIUxRSYeDhw7Pvog-YdjyIfvfurGPuTdMJ7idG7yxMPYd8fPW3HVcp_C3cKV2D8_fWxf5e795W37uJN-vjBJpbxr2HplSqwtMpaFM8Ta18YoywaoaRjYcQDUYBSBap2xinCO0tR6JTb_uz6eUoqhrcbYDRx_K4Tq7FotrtXiqv8AzWtE0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variance-aware multiple importance sampling</title><source>ACM Digital Library Complete</source><creator>Grittmann, Pascal ; Georgiev, Iliyan ; Slusallek, Philipp ; Křivánek, Jaroslav</creator><creatorcontrib>Grittmann, Pascal ; Georgiev, Iliyan ; Slusallek, Philipp ; Křivánek, Jaroslav</creatorcontrib><description>Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/3355089.3356515</identifier><language>eng</language><ispartof>ACM transactions on graphics, 2019-11, Vol.38 (6), p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</citedby><cites>FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grittmann, Pascal</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Slusallek, Philipp</creatorcontrib><creatorcontrib>Křivánek, Jaroslav</creatorcontrib><title>Variance-aware multiple importance sampling</title><title>ACM transactions on graphics</title><description>Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.</description><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotj01LxDAURYMoWEfXbruXzLyX5DXpUga_YMCNM9vymqZSaWdKUhH_vR3s5p7Fhcs9QtwjrBENbbQmAleuZxaEdCEyJLLS6sJdigysBgka8FrcpPQFAIUxRSYeDhw7Pvog-YdjyIfvfurGPuTdMJ7idG7yxMPYd8fPW3HVcp_C3cKV2D8_fWxf5e795W37uJN-vjBJpbxr2HplSqwtMpaFM8Ta18YoywaoaRjYcQDUYBSBap2xinCO0tR6JTb_uz6eUoqhrcbYDRx_K4Tq7FotrtXiqv8AzWtE0g</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Grittmann, Pascal</creator><creator>Georgiev, Iliyan</creator><creator>Slusallek, Philipp</creator><creator>Křivánek, Jaroslav</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Variance-aware multiple importance sampling</title><author>Grittmann, Pascal ; Georgiev, Iliyan ; Slusallek, Philipp ; Křivánek, Jaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-22c8da7c2491b71a196845a3cb4427a405dda0a8ae013042502f84725147294b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grittmann, Pascal</creatorcontrib><creatorcontrib>Georgiev, Iliyan</creatorcontrib><creatorcontrib>Slusallek, Philipp</creatorcontrib><creatorcontrib>Křivánek, Jaroslav</creatorcontrib><collection>CrossRef</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grittmann, Pascal</au><au>Georgiev, Iliyan</au><au>Slusallek, Philipp</au><au>Křivánek, Jaroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance-aware multiple importance sampling</atitle><jtitle>ACM transactions on graphics</jtitle><date>2019-11-01</date><risdate>2019</risdate><volume>38</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.</abstract><doi>10.1145/3355089.3356515</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2019-11, Vol.38 (6), p.1-9 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_crossref_primary_10_1145_3355089_3356515 |
source | ACM Digital Library Complete |
title | Variance-aware multiple importance sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance-aware%20multiple%20importance%20sampling&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Grittmann,%20Pascal&rft.date=2019-11-01&rft.volume=38&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/3355089.3356515&rft_dat=%3Ccrossref%3E10_1145_3355089_3356515%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |