Variance-aware multiple importance sampling

Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2019-11, Vol.38 (6), p.1-9
Hauptverfasser: Grittmann, Pascal, Georgiev, Iliyan, Slusallek, Philipp, Křivánek, Jaroslav
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.
ISSN:0730-0301
1557-7368
DOI:10.1145/3355089.3356515