A Self-aware Resource Management Framework for Heterogeneous Multicore SoCs with Diverse QoS Targets

In modern heterogeneous MPSoCs, the management of shared memory resources is crucial in delivering end-to-end QoS. Previous frameworks have either focused on singular QoS targets or the allocation of partitionable resources among CPU applications at relatively slow timescales. However, heterogeneous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on architecture and code optimization 2019-06, Vol.16 (2), p.1-23
Hauptverfasser: Song, Yang, Alavoine, Olivier, Lin, Bill
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern heterogeneous MPSoCs, the management of shared memory resources is crucial in delivering end-to-end QoS. Previous frameworks have either focused on singular QoS targets or the allocation of partitionable resources among CPU applications at relatively slow timescales. However, heterogeneous MPSoCs typically require instant response from the memory system where most resources cannot be partitioned. Moreover, the health of different cores in a heterogeneous MPSoC is often measured by diverse performance objectives. In this work, we propose the Self-Aware Resource Allocation framework for heterogeneous MPSoCs. Priority-based adaptation allows cores to use different target performance and self-monitor their own intrinsic health. In response, the system allocates non-partitionable resources based on priorities. The proposed framework meets a diverse range of QoS demands from heterogeneous cores. Moreover, we present a runtime scheme to configure priority-based adaptation so that distinct sensitivities of heterogeneous QoS targets with respect to memory allocation can be accommodated. In addition, the priority of best-effort cores can also be regulated.
ISSN:1544-3566
1544-3973
DOI:10.1145/3319804