Enclosing Chebyshev Expansions in Linear Time
We consider the problem of computing rigorous enclosures for polynomials represented in the Chebyshev basis. Our aim is to compare and develop algorithms with a linear complexity in terms of the polynomial degree. A first category of methods relies on a direct interval evaluation of the given Chebys...
Gespeichert in:
Veröffentlicht in: | ACM transactions on mathematical software 2019-08, Vol.45 (3), p.1-33, Article 27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of computing rigorous enclosures for polynomials represented in the Chebyshev basis. Our aim is to compare and develop algorithms with a linear complexity in terms of the polynomial degree. A first category of methods relies on a direct interval evaluation of the given Chebyshev expansion in which Chebyshev polynomials are bounded, e.g., with a divide-and-conquer strategy. Our main category of methods that are based on the Clenshaw recurrence includes interval Clenshaw with defect correction (ICDC), and the spectral transformation of Clenshaw recurrence rewritten as a discrete dynamical system. An extension of the barycentric representation to interval arithmetic is also considered that has a log-linear complexity as it takes advantage of a verified discrete cosine transform. We compare different methods and provide illustrative numerical experiments. In particular, our eigenvalue-based methods are interesting for bounding the range of high-degree interval polynomials. Some of the methods rigorously compute narrow enclosures for high-degree Chebyshev expansions at thousands of points in a few seconds on an average computer. We also illustrate how to employ our methods as an automatic a posteriori forward error analysis tool to monitor the accuracy of the Chebfun feval command. |
---|---|
ISSN: | 0098-3500 1557-7295 |
DOI: | 10.1145/3319395 |