Toward an Effective Igbo Part-of-Speech Tagger
Part-of-speech (POS) tagging is a well-established technology for most Western European languages and a few other world languages, but it has not been evaluated on Igbo, an agglutinative African language. This article presents POS tagging experiments conducted using an Igbo corpus as a test bed for...
Gespeichert in:
Veröffentlicht in: | ACM transactions on Asian and low-resource language information processing 2019-08, Vol.18 (4), p.1-26 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Part-of-speech (POS) tagging is a well-established technology for most Western European languages and a few other world languages, but it has not been evaluated on Igbo, an agglutinative African language. This article presents POS tagging experiments conducted using an Igbo corpus as a test bed for identifying the POS taggers and the Machine Learning (ML) methods that can achieve a good performance with the small dataset available for the language. Experiments have been conducted using different well-known POS taggers developed for English or European languages, and different training data styles and sizes. Igbo has a number of language-specific characteristics that present a challenge for effective POS tagging. One interesting case is the wide use of verbs (and nominalizations thereof) that have an
inherent noun complement
, which form “linked pairs” in the POS tagging scheme, but which may appear discontinuously. Another issue is Igbo’s highly productive agglutinative morphology, which can produce many variant word forms from a given root. This productivity is a key cause of the out-of-vocabulary (OOV) words observed during Igbo tagging. We report results of experiments on a promising direction for improving tagging performance on such morphologically-inflected OOV words. |
---|---|
ISSN: | 2375-4699 2375-4702 |
DOI: | 10.1145/3314942 |