Spatiotemporal Representation Learning for Translation-Based POI Recommendation

The increasing proliferation of location-based social networks brings about a huge volume of user check-in data, which facilitates the recommendation of points of interest (POIs). Time and location are the two most important contextual factors in the user’s decision-making for choosing a POI to visi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on information systems 2019-04, Vol.37 (2), p.1-24
Hauptverfasser: Qian, Tieyun, Liu, Bei, Nguyen, Quoc Viet Hung, Yin, Hongzhi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing proliferation of location-based social networks brings about a huge volume of user check-in data, which facilitates the recommendation of points of interest (POIs). Time and location are the two most important contextual factors in the user’s decision-making for choosing a POI to visit. In this article, we focus on the spatiotemporal context-aware POI recommendation, which considers the joint effect of time and location for POI recommendation. Inspired by the recent advances in knowledge graph embedding, we propose a spatiotemporal context-aware and translation-based recommender framework (STA) to model the third-order relationship among users, POIs, and spatiotemporal contexts for large-scale POI recommendation. Specifically, we embed both users and POIs into a “transition space” where spatiotemporal contexts (i.e., a < time, location > pair) are modeled as translation vectors operating on users and POIs. We further develop a series of strategies to exploit various correlation information to address the data sparsity and cold-start issues for new spatiotemporal contexts, new users, and new POIs. We conduct extensive experiments on two real-world datasets. The experimental results demonstrate that our STA framework achieves the superior performance in terms of high recommendation accuracy, robustness to data sparsity, and effectiveness in handling the cold-start problem.
ISSN:1046-8188
1558-2868
DOI:10.1145/3295499