Higher inductive types in cubical computational type theory

Homotopy type theory proposes higher inductive types (HITs) as a means of defining and reasoning about inductively-generated objects with higher-dimensional structure. As with the univalence axiom, however, homotopy type theory does not specify the computational behavior of HITs. Computational inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages 2019-01, Vol.3 (POPL), p.1-27
Hauptverfasser: Cavallo, Evan, Harper, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homotopy type theory proposes higher inductive types (HITs) as a means of defining and reasoning about inductively-generated objects with higher-dimensional structure. As with the univalence axiom, however, homotopy type theory does not specify the computational behavior of HITs. Computational interpretations have now been provided for univalence and specific HITs by way of cubical type theories, which use a judgmental infrastructure of dimension variables. We extend the cartesian cubical computational type theory introduced by Angiuli et al. with a schema for indexed cubical inductive types (CITs), an adaptation of higher inductive types to the cubical setting. In doing so, we isolate the canonical values of a cubical inductive type and prove a canonicity theorem with respect to these values.
ISSN:2475-1421
2475-1421
DOI:10.1145/3290314