Towards understanding the costs of avoiding out-of-thin-air results

Eliminating so-called “out-of-thin-air” (OOTA) results is an open problem with many existing programming language memory models including Java, C, and C++. OOTA behaviors are problematic in that they break both formal and informal modular reasoning about program behavior. Defining memory model seman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages 2018-11, Vol.2 (OOPSLA), p.1-29
Hauptverfasser: Ou, Peizhao, Demsky, Brian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eliminating so-called “out-of-thin-air” (OOTA) results is an open problem with many existing programming language memory models including Java, C, and C++. OOTA behaviors are problematic in that they break both formal and informal modular reasoning about program behavior. Defining memory model semantics that are easily understood, allow existing optimizations, and forbid OOTA results remains an open problem. This paper explores two simple solutions to this problem that forbid OOTA results. One solution is targeted towards C/C++-like memory models in which racing operations are explicitly labeled as atomic operations and a second solution is targeted towards Java-like languages in which all memory operations may create OOTA executions. Our solutions provide a per-candidate execution criterion that makes it possible to examine a single execution and determine whether the memory model permits the execution. We implemented and evaluated both solutions in the LLVM compiler framework. Our results show that on an ARMv8 processor the first solution has no overhead on average and a maximum overhead of 6.3% on 43 concurrent data structures, and that the second solution has an average overhead of 3.1% and a maximum overhead of 17.6% on the SPEC CPU2006 C/C++ benchmarks.
ISSN:2475-1421
2475-1421
DOI:10.1145/3276506