Autonomous Selection and Printing of 3D Models for People Who Are Blind

3D models are an important means for understanding spatial contexts. Today these models can be materialized by 3D printing, which is increasingly used at schools for people with visual impairments. In contrast to sighted people, people with visual impairments have so far, however, neither been able...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on accessible computing 2018-10, Vol.11 (3), p.1-25
1. Verfasser: Götzelmann, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D models are an important means for understanding spatial contexts. Today these models can be materialized by 3D printing, which is increasingly used at schools for people with visual impairments. In contrast to sighted people, people with visual impairments have so far, however, neither been able to search nor to print 3D models without assistance. This article describes our work to develop an aid for people with visual impairments that would facilitate autonomous searching for and printing of 3D models. In our initial study, we determined the requirements to accomplish this task by means of a questionnaire and developed a first approach that allowed personal computer-based 3D printing. An extended approach allowed searching and printing using common smartphones. In our architecture, technical details of 3D printers are abstracted by a separate component that can be accessed via Wi-Fi independently of the actual 3D printer used. It comprises a search of the models in an annotated database and 3D model retrieval from the internet. The whole process can be controlled by voice interaction. The feasibility of autonomous 3D printing for people with visual impairments is shown with a first user study. Our second user study examines the usability of the user interface when searching for 3D models on the internet and preparing them for the materialization. The participants were able to define important printing settings, whereas other printing parameters could be determined algorithmically.
ISSN:1936-7228
1936-7236
DOI:10.1145/3241066