Smartwatch-based Early Gesture Detection 8 Trajectory Tracking for Interactive Gesture-Driven Applications
The paper explores the possibility of using wrist-worn devices (specifically, a smartwatch) to accurately track the hand movement and gestures for a new class of immersive, interactive gesture-driven applications. These interactive applications need two special features: (a) the ability to identify...
Gespeichert in:
Veröffentlicht in: | Proceedings of ACM on interactive, mobile, wearable and ubiquitous technologies mobile, wearable and ubiquitous technologies, 2018-03, Vol.2 (1), p.1-27, Article 39 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper explores the possibility of using wrist-worn devices (specifically, a smartwatch) to accurately track the hand movement and gestures for a new class of immersive, interactive gesture-driven applications. These interactive applications need two special features: (a) the ability to identify gestures from a continuous stream of sensor data early--i.e., even before the gesture is complete, and (b) the ability to precisely track the hand's trajectory, even though the underlying inertial sensor data is noisy. We develop a new approach that tackles these requirements by first building a HMM-based gesture recognition framework that does not need an explicit segmentation step, and then using a per-gesture trajectory tracking solution that tracks the hand movement only during these predefined gestures. Using an elaborate setup that allows us to realistically study the table-tennis related hand movements of users, we show that our approach works: (a) it can achieve 95% stroke recognition accuracy. Within 50% of gesture, it can achieve a recall value of 92% for 10 novice users and 93% for 15 experienced users from a continuous sensor stream; (b) it can track hand movement during such strokeplay with a median accuracy of 6.2 cm. |
---|---|
ISSN: | 2474-9567 2474-9567 |
DOI: | 10.1145/3191771 |