Randomized Communication versus Partition Number

We show that randomized communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal randomized lower bounds for the Clique versus Independent Set problem. These results strengthen the deterministic lower bounds obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on computation theory 2018-01, Vol.10 (1), p.1-20
Hauptverfasser: Göös, Mika, Jayram, T. S., Pitassi, Toniann, Watson, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that randomized communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal randomized lower bounds for the Clique versus Independent Set problem. These results strengthen the deterministic lower bounds obtained in prior work (Göös, Pitassi, and Watson, FOCS’15). One of our main technical contributions states that information complexity when the cost is measured with respect to only 1-inputs (or only 0-inputs) is essentially equivalent to information complexity with respect to all inputs.
ISSN:1942-3454
1942-3462
DOI:10.1145/3170711