Randomized Communication versus Partition Number
We show that randomized communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal randomized lower bounds for the Clique versus Independent Set problem. These results strengthen the deterministic lower bounds obtained...
Gespeichert in:
Veröffentlicht in: | ACM transactions on computation theory 2018-01, Vol.10 (1), p.1-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that
randomized
communication complexity can be superlogarithmic in the partition number of the associated communication matrix, and we obtain near-optimal
randomized
lower bounds for the Clique versus Independent Set problem. These results strengthen the deterministic lower bounds obtained in prior work (Göös, Pitassi, and Watson, FOCS’15). One of our main technical contributions states that information complexity when the cost is measured with respect to only 1-inputs (or only 0-inputs) is essentially equivalent to information complexity with respect to all inputs. |
---|---|
ISSN: | 1942-3454 1942-3462 |
DOI: | 10.1145/3170711 |