Achieving high coverage for floating-point code via unconstrained programming

Achieving high code coverage is essential in testing, which gives us confidence in code quality. Testing floating-point code usually requires painstaking efforts in handling floating-point constraints, e.g., in symbolic execution. This paper turns the challenge of testing floating-point code into th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGPLAN notices 2017-09, Vol.52 (6), p.306-319
Hauptverfasser: Fu, Zhoulai, Su, Zhendong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Achieving high code coverage is essential in testing, which gives us confidence in code quality. Testing floating-point code usually requires painstaking efforts in handling floating-point constraints, e.g., in symbolic execution. This paper turns the challenge of testing floating-point code into the opportunity of applying unconstrained programming --- the mathematical solution for calculating function minimum points over the entire search space. Our core insight is to derive a representing function from the floating-point program, any of whose minimum points is a test input guaranteed to exercise a new branch of the tested program. This guarantee allows us to achieve high coverage of the floating-point program by repeatedly minimizing the representing function. We have realized this approach in a tool called CoverMe and conducted an extensive evaluation of it on Sun's C math library. Our evaluation results show that CoverMe achieves, on average, 90.8% branch coverage in 6.9 seconds, drastically outperforming our compared tools: (1) Random testing, (2) AFL, a highly optimized, robust fuzzer released by Google, and (3) Austin, a state-of-the-art coverage-based testing tool designed to support floating-point code.
ISSN:0362-1340
1558-1160
DOI:10.1145/3140587.3062383