An Accuracy Tunable Non-Boolean Co-Processor Using Coupled Nano-Oscillators

As we enter an era witnessing the closer end of Dennard scaling, where further reduction in power supply-voltage to reduce power consumption becomes more challenging in conventional systems, a goal of developing a system capable of performing large computations with minimal area and power overheads...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM journal on emerging technologies in computing systems 2018-03, Vol.14 (1), p.1-28
Hauptverfasser: Gala, Neel, Krithivasan, Sarada, Tsai, Wei-Yu, Li, Xueqing, Narayanan, Vijaykrishnan, Kamakoti, V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As we enter an era witnessing the closer end of Dennard scaling, where further reduction in power supply-voltage to reduce power consumption becomes more challenging in conventional systems, a goal of developing a system capable of performing large computations with minimal area and power overheads needs more optimization aspects. A rigorous exploration of alternate computing techniques, which can mitigate the limitations of Complementary Metal-Oxide Semiconductor (CMOS) technology scaling and conventional Boolean systems, is imperative. Reflecting on these lines of thought, in this article we explore the potential of non-Boolean computing employing nano-oscillators for performing varied functions. We use a two coupled nano-oscillator as our basic computational model and propose an architecture for a non-Boolean coupled oscillator based co-processor capable of executing certain functions that are commonly used across a variety of approximate application domains. The proposed architecture includes an accuracy tunable knob, which can be tuned by the programmer at runtime. The functionality of the proposed co-processor is verified using a soft coupled oscillator model based on Kuramoto oscillators. The article also demonstrates how real-world applications such as Vector Quantization, Digit Recognition, Structural Health Monitoring, and the like, can be deployed on the proposed model. The proposed co-processor architecture is generic in nature and can be implemented using any of the existing modern day nano-oscillator technologies such as Resonant Body Transistors (RBTs), Spin-Torque Nano-Oscillators (STNOs), and Metal-Insulator Transition (MITs) . In this article, we perform a validation of the proposed architecture using the HyperField Effect Transistor (FET) technology-based coupled oscillators, which provide improvements of up to 3.5× increase in clock speed and up to 10.75× and 14.12× reduction in area and power consumption, respectively, as compared to a conventional Boolean CMOS accelerator executing the same functions.
ISSN:1550-4832
1550-4840
DOI:10.1145/3094263