Epipolar time-of-flight imaging
Consumer time-of-flight depth cameras like Kinect and PMD are cheap, compact and produce video-rate depth maps in short-range applications. In this paper we apply energy-efficient epipolar imaging to the ToF domain to significantly expand the versatility of these sensors: we demonstrate live 3D imag...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2017-08, Vol.36 (4), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consumer time-of-flight depth cameras like Kinect and PMD are cheap, compact and produce video-rate depth maps in short-range applications. In this paper we apply energy-efficient epipolar imaging to the ToF domain to significantly expand the versatility of these sensors: we demonstrate live 3D imaging at over 15 m range outdoors in bright sunlight; robustness to global transport effects such as specular and diffuse inter-reflections---the first live demonstration for this ToF technology; interference-free 3D imaging in the presence of many ToF sensors, even when they are all operating at the same optical wavelength and modulation frequency; and blur-free, distortion-free 3D video in the presence of severe camera shake. We believe these achievements can make such cheap ToF devices broadly applicable in consumer and robotics domains. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/3072959.3073686 |