A Fine-Grain, Uniform, Energy-Efficient Delay Element for 2-Phase Bundled-Data Circuits
Contemporary digitally controlled delay elements (DEs) trade off power overheads and delay quantization error (DQE). This article proposes a new programmable DE that provides a balanced design that yields low power with moderate DQE even under process, voltage, and temperature variations. The elemen...
Gespeichert in:
Veröffentlicht in: | ACM journal on emerging technologies in computing systems 2017-04, Vol.13 (2), p.1-23 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Contemporary digitally controlled delay elements (DEs) trade off power overheads and delay quantization error (DQE). This article proposes a new programmable DE that provides a balanced design that yields low power with moderate DQE even under process, voltage, and temperature variations. The element employs and leverages the advantages offered by a 28nm fully depleted silicon on insulator technology, using back body biasing to add an extra dimension to its programmability. To do so, a novel generic delay shift block is proposed, which enables incorporating both fine and coarse delays in a single DE that can be easily integrated into digital systems, which is an advantage over hybrid DEs that rely on analog design. |
---|---|
ISSN: | 1550-4832 1550-4840 |
DOI: | 10.1145/2948067 |