Ligra: a lightweight graph processing framework for shared memory

There has been significant recent interest in parallel frameworks for processing graphs due to their applicability in studying social networks, the Web graph, networks in biology, and unstructured meshes in scientific simulation. Due to the desire to process large graphs, these systems have emphasiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGPLAN notices 2013-08, Vol.48 (8), p.135-146
Hauptverfasser: Shun, Julian, Blelloch, Guy E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There has been significant recent interest in parallel frameworks for processing graphs due to their applicability in studying social networks, the Web graph, networks in biology, and unstructured meshes in scientific simulation. Due to the desire to process large graphs, these systems have emphasized the ability to run on distributed memory machines. Today, however, a single multicore server can support more than a terabyte of memory, which can fit graphs with tens or even hundreds of billions of edges. Furthermore, for graph algorithms, shared-memory multicores are generally significantly more efficient on a per core, per dollar, and per joule basis than distributed memory systems, and shared-memory algorithms tend to be simpler than their distributed counterparts. In this paper, we present a lightweight graph processing framework that is specific for shared-memory parallel/multicore machines, which makes graph traversal algorithms easy to write. The framework has two very simple routines, one for mapping over edges and one for mapping over vertices. Our routines can be applied to any subset of the vertices, which makes the framework useful for many graph traversal algorithms that operate on subsets of the vertices. Based on recent ideas used in a very fast algorithm for breadth-first search (BFS), our routines automatically adapt to the density of vertex sets. We implement several algorithms in this framework, including BFS, graph radii estimation, graph connectivity, betweenness centrality, PageRank and single-source shortest paths. Our algorithms expressed using this framework are very simple and concise, and perform almost as well as highly optimized code. Furthermore, they get good speedups on a 40-core machine and are significantly more efficient than previously reported results using graph frameworks on machines with many more cores.
ISSN:0362-1340
1558-1160
DOI:10.1145/2517327.2442530