CloudNet: dynamic pooling of cloud resources by live WAN migration of virtual machines

Virtual machine technology and the ease with which VMs can be migrated within the LAN, has changed the scope of resource management from allocating resources on a single server to manipulating pools of resources within a data center. We expect WAN migration of virtual machines to likewise transform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGPLAN notices 2011-07, Vol.46 (7), p.121-132
Hauptverfasser: Wood, Timothy, Ramakrishnan, K. K., Shenoy, Prashant, van der Merwe, Jacobus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Virtual machine technology and the ease with which VMs can be migrated within the LAN, has changed the scope of resource management from allocating resources on a single server to manipulating pools of resources within a data center. We expect WAN migration of virtual machines to likewise transform the scope of provisioning compute resources from a single data center to multiple data centers spread across the country or around the world. In this paper we present the CloudNet architecure as a cloud framework consisting of cloud computing platforms linked with a VPN based network infrastructure to provide seamless and secure connectivity between enterprise and cloud data center sites. To realize our vision of efficiently pooling geographically distributed data center resources, CloudNet provides optimized support for live WAN migration of virtual machines. Specifically, we present a set of optimizations that minimize the cost of transferring storage and virtual machine memory during migrations over low bandwidth and high latency Internet links. We evaluate our system on an operational cloud platform distributed across the continental US. During simultaneous migrations of four VMs between data centers in Texas and Illinois, CloudNet's optimizations reduce memory migration time by 65% and lower bandwidth consumption for the storage and memory transfer by 19GB, a 50% reduction.
ISSN:0362-1340
1558-1160
DOI:10.1145/2007477.1952699