Green: a framework for supporting energy-conscious programming using controlled approximation

Energy-efficient computing is important in several systems ranging from embedded devices to large scale data centers. Several application domains offer the opportunity to tradeoff quality of service/solution (QoS) for improvements in performance and reduction in energy consumption. Programmers somet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIGPLAN notices 2010-06, Vol.45 (6), p.198-209
Hauptverfasser: Baek, Woongki, Chilimbi, Trishul M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy-efficient computing is important in several systems ranging from embedded devices to large scale data centers. Several application domains offer the opportunity to tradeoff quality of service/solution (QoS) for improvements in performance and reduction in energy consumption. Programmers sometimes take advantage of such opportunities, albeit in an ad-hoc manner and often without providing any QoS guarantees. We propose a system called Green that provides a simple and flexible framework that allows programmers to take advantage of such approximation opportunities in a systematic manner while providing statistical QoS guarantees. Green enables programmers to approximate expensive functions and loops and operates in two phases. In the calibration phase, it builds a model of the QoS loss produced by the approximation. This model is used in the operational phase to make approximation decisions based on the QoS constraints specified by the programmer. The operational phase also includes an adaptation function that occasionally monitors the runtime behavior and changes the approximation decisions and QoS model to provide strong statistical QoS guarantees. To evaluate the effectiveness of Green, we implemented our system and language extensions using the Phoenix compiler framework. Our experiments using benchmarks from domains such as graphics, machine learning, signal processing, and finance, and an in-production, real-world web search engine, indicate that Green can produce significant improvements in performance and energy consumption with small and controlled QoS degradation.
ISSN:0362-1340
1558-1160
DOI:10.1145/1809028.1806620