On the self-similar nature of Ethernet traffic

We demonstrate that Ethernet local area network (LAN) traffic is statistically self-similar, that none of the commonly used traffic models is able to capture this fractal behavior, and that such behavior has serious implications for the design, control, and analysis of high-speed, cell-based network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer communication review 1993-10, Vol.23 (4), p.183-193
Hauptverfasser: Leland, Will E., Taqqu, Murad S., Willinger, Walter, Wilson, Daniel V.
Format: Magazinearticle
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that Ethernet local area network (LAN) traffic is statistically self-similar, that none of the commonly used traffic models is able to capture this fractal behavior, and that such behavior has serious implications for the design, control, and analysis of high-speed, cell-based networks. Intuitively, the critical characteristic of this self-similar traffic is that there is no natural length of a "burst": at every time scale ranging from a few milliseconds to minutes and hours, similar-looking traffic bursts are evident; we find that aggregating streams of such traffic typically intensifies the self-similarity ("burstiness") instead of smoothing it.Our conclusions are supported by a rigorous statistical analysis of hundreds of millions of high quality Ethernet traffic measurements collected between 1989 and 1992, coupled with a discussion of the underlying mathematical and statistical properties of self-similarity and their relationship with actual network behavior. We also consider some implications for congestion control in high-bandwidth networks and present traffic models based on self-similar stochastic processes that are simple, accurate, and realistic for aggregate traffic.
ISSN:0146-4833
DOI:10.1145/167954.166255