An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements
This article describes a computationally efficient formulation and an algorithm for tetrahedral finite-element simulation of elastic objects subject to Saint Venant-Kirchhoff (StVK) material law. The number of floating point operations required by the algorithm is in the range of 15% to 27% for comp...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2009-01, Vol.28 (1), p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article describes a computationally efficient formulation and an algorithm for tetrahedral finite-element simulation of elastic objects subject to Saint Venant-Kirchhoff (StVK) material law. The number of floating point operations required by the algorithm is in the range of 15% to 27% for computing the vertex forces from a given set of vertex positions, and 27% to 38% for the tangent stiffness matrix, in comparison to a well-optimized algorithm directly derived from the conventional Total Lagrangian formulation. In the new algorithm, the data is associated with edges and tetrahedron-sharing edge-pairs (TSEPs), as opposed to tetrahedra, to avoid redundant computation. Another characteristic of the presented formulation is that it reduces to that of a spring-network model by simply ignoring all the TSEPs. The technique is demonstrated through an interactive application involving haptic interaction, being combined with a linearized implicit integration technique employing a preconditioned conjugate gradient method. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/1477926.1477934 |