Merge: a programming model for heterogeneous multi-core systems
In this paper we propose the Merge framework, a general purpose programming model for heterogeneous multi-core systems. The Merge framework replaces current ad hoc approaches to parallel programming on heterogeneous platforms with a rigorous, library-based methodology that can automatically distribu...
Gespeichert in:
Veröffentlicht in: | SIGPLAN notices 2008-03, Vol.43 (3), p.287-296 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we propose the Merge framework, a general purpose programming model for heterogeneous multi-core systems. The Merge framework replaces current ad hoc approaches to parallel programming on heterogeneous platforms with a rigorous, library-based methodology that can automatically distribute computation across heterogeneous cores to achieve increased energy and performance efficiency. The Merge framework provides (1) a predicate dispatch-based library system for managing and invoking function variants for multiple architectures; (2) a high-level, library-oriented parallel language based on map-reduce; and (3) a compiler and runtime which implement the map-reduce language pattern by dynamically selecting the best available function implementations for a given input and machine configuration. Using a generic sequencer architecture interface for heterogeneous accelerators, the Merge framework can integrate function variants for specialized accelerators, offering the potential for to-the-metal performance for a wide range of heterogeneous architectures, all transparent to the user. The Merge framework has been prototyped on a heterogeneous platform consisting of an Intel Core 2 Duo CPU and an 8-core 32-thread Intel Graphics and Media Accelerator X3000, and a homogeneous 32-way Unisys SMP system with Intel Xeon processors. We implemented a set of benchmarks using the Merge framework and enhanced the library with X3000 specific implementations, achieving speedups of 3.6x -- 8.5x using the X3000 and 5.2x -- 22x using the 32-way system relative to the straight C reference implementation on a single IA32 core. |
---|---|
ISSN: | 0362-1340 1558-1160 |
DOI: | 10.1145/1353536.1346318 |