Secure Virtual Architecture : A Safe Execution Environment for Commodity Operating Systems
This paper describes an efficient and robust approach to provide a safe execution environment for an entire operating system, such as Linux, and all its applications. The approach, which we call Secure Virtual Architecture (SVA), defines a virtual, low-level, typed instruction set suitable for execu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes an efficient and robust approach to provide a
safe execution environment
for an entire operating system, such as Linux, and all its applications. The approach, which we call
Secure Virtual Architecture
(SVA), defines a virtual, low-level, typed instruction set suitable for executing all code on a system, including kernel and application code. SVA code is translated for execution by a virtual machine transparently, offline or online. SVA aims to enforce
fine-grained (object level) memory safety, control-flow integrity, type safety for a subset of objects
, and
sound analysis
. A virtual machine implementing SVA achieves these goals by using a novel approach that exploits properties of existing memory pools in the kernel and by preserving the kernel's explicit control over memory, including custom allocators and explicit deallocation. Furthermore, the safety properties can be encoded compactly as extensions to the SVA type system, allowing the (complex) safety checking compiler to be outside the trusted computing base. SVA also defines a set of OS interface operations that abstract all privileged hardware instructions, allowing the virtual machine to monitor all privileged operations and control the physical resources on a given hardware platform. We have ported the Linux kernel to SVA, treating it as a new architecture, and made only minimal code changes (less than 300 lines of code) to the machine-independent parts of the kernel and device drivers. SVA is able to prevent 4 out of 5 memory safety exploits previously reported for the Linux 2.4.22 kernel for which exploit code is available, and would prevent the fifth one simply by compiling an additional kernel library. |
---|---|
ISSN: | 0163-5980 1943-586X |
DOI: | 10.1145/1323293.1294295 |