Speculative execution in a distributed file system

Speculator provides Linux kernel support for speculative execution. It allows multiple processes to share speculative state by tracking causal dependencies propagated through inter-process communication. It guarantees correct execution by preventing speculative processes from externalizing output, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NIGHTINGALE, Edmund B, CHEN, Peter M, FLINN, Jason
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Speculator provides Linux kernel support for speculative execution. It allows multiple processes to share speculative state by tracking causal dependencies propagated through inter-process communication. It guarantees correct execution by preventing speculative processes from externalizing output, e.g., sending a network message or writing to the screen, until the speculations on which that output depends have proven to be correct. Speculator improves the performance of distributed file systems by masking I/O latency and increasing I/O throughput. Rather than block during a remote operation, a file system predicts the operation's result, then uses Speculator to checkpoint the state of the calling process and speculatively continue its execution based on the predicted result. If the prediction is correct, the checkpoint is discarded; if it is incorrect, the calling process is restored to the checkpoint, and the operation is retried. We have modified the client, server, and network protocol of two distributed file systems to use Speculator. For PostMark and Andrew-style benchmarks, speculative execution results in a factor of 2 performance improvement for NFS over local-area networks and an order of magnitude improvement over wide-area networks. For the same benchmarks, Speculator enables the Blue File System to provide the consistency of single-copy file semantics and the safety of synchronous I/O, yet still outperform current distributed file systems with weaker consistency and safety.
ISSN:0163-5980
1943-586X
DOI:10.1145/1095809.1095829