Departures from the archetypal deltaic ichnofacies
Recent work has focused on erecting new Seilacherian ichnofacies for depositional environments subject to recurring temporal and spatial variations in physico-chemical stress. In marine deltaic settings, these correspond to the Phycosiphon Ichnofacies for mudstone-dominated prodeltaic deposits and t...
Gespeichert in:
Veröffentlicht in: | Geological Society special publication 2023-06, Vol.522 (1), p.175-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent work has focused on erecting new Seilacherian ichnofacies for depositional environments subject to recurring temporal and spatial variations in physico-chemical stress. In marine deltaic settings, these correspond to the Phycosiphon Ichnofacies for mudstone-dominated prodeltaic deposits and the Rosselia Ichnofacies for sandstone-dominated delta-front successions. The archetypal expressions of these ichnofacies, however, are founded on mixed process (wave- and river-influenced) systems, because the juxtaposition of ambient marine conditions during periods of prolonged wave energy with rapid deposition and physico-chemically stressed conditions during heightened fluvial discharge best expresses the deltaic signal. As deltaic settings shift towards end-member processes (e.g. river domination, wave domination and tide domination), or towards mixed-process conditions other than river and wave influence, the resulting ichnological suites and bioturbation fabrics depart from the recently published archetypes.
Using selected studies of marine deltaic deposits, predictable departures from the archetypes can be recognized on the basis of these changing processes and their associated physico-chemical stresses. River-dominated delta deposits and tide-dominated delta successions display the greatest deviation from the published archetypes. River-dominated examples show elevated deposition rates, periods of salinity reduction, slumping and dewatering, elevated water turbidity, flood-induced sediment gravity flows and hypopycnal-generated fluid mud. As a result, river-dominated successions are largely devoid of bioturbation. Evidence of marine conditions is commonly restricted to isolated occurrences of dwelling structures such as Arenicolites, Ophiomorpha or Rosselia in sandstone, and Chondrites, Phycosiphon or Zoophycos in mudstone beds, particularly in prodeltaic intervals. Tide-dominated deltaic successions are markedly heterolithic and typified by highly mobile substrates manifested by incrementally migrating asymmetric bedforms and abundant fluid mud. Such settings are also prone to marked changes in salinity and shifts in the position of the turbidity maximum zone. Successions typically show low intensities of bioturbation and sporadically distributed burrows, as well as deposit-feeding structures, deeply penetrating dwelling structures or fugichnia. Many trace fossil suites consist entirely of facies-crossing elements, making assignment to an ichnofacies i |
---|---|
ISSN: | 0305-8719 2041-4927 |
DOI: | 10.1144/SP522-2022-56 |