Petrogenesis of a calc-alkaline lamprophyre (minette) from Thanewasna, Western Bastar Craton, Central India: insights from mineral, bulk rock and in-situ trace element geochemistry
The lamproites and kimberlites are well known from the Eastern Bastar Craton, Central India. However, a Proterozoic lamprophyre dyke is discussed here, from the Western Bastar Craton (WBC). The field geology, petrographic, mineralogical and whole-rock and in-situ trace element geochemistry of biotit...
Gespeichert in:
Veröffentlicht in: | Geological Society special publication 2022, Vol.513 (1), p.179-207 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lamproites and kimberlites are well known from the Eastern Bastar Craton, Central India. However, a Proterozoic lamprophyre dyke is discussed here, from the Western Bastar Craton (WBC). The field geology, petrographic, mineralogical and whole-rock and in-situ trace element geochemistry of biotite are described to understand the petrogenesis and lithospheric evolution in the WBC. The Thanewasna lamprophyre (TL) is undeformed and unmetamorphosed, intruded into c. 2.5 Ga charnockite and metagabbro but closely associated with c. 1.62 Ga undeformed Mul granite. The TL has a characteristic porphyritic texture, dominated by phenocrysts of biotite, microphenocryst of amphibole, clinopyroxene and a groundmass controlled by feldspar. Mineral chemistry of biotite and amphibole suggest a calc-alkaline (CAL) type, and pyroxene chemistry reveals an orogenic setting. The TL is characterized by high SiO2 and low TiO2, MgO, Ni and Cr, consistent with its subcontinental lithospheric origin. The presence of crustal xenolith and ocelli texture followed by observed variations in Th/Yb, Hf/Sm, La/Nb, Ta/La, Nb/Yb, Ba/Nb indicate substantial crustal contamination. Whole-rock and in-situ biotite analysis by laser ablation inductively coupled plasma mass spectrometry show low concentrations of Ni (30–50 ppm) and Cr (70–150 ppm), pointing to the parental magma evolved nature. Enrichment in H2O, reflected in magmatic mica dominance, combined with high large ion lithophile element, Th/Yb ratios, and striking negative Nb–Ta anomalies in trace element patterns, is consistent with a source that was metasomatized by hydrous fluids corresponding to those generated by subduction-related processes. Significant Zr–Hf and Ti anomalies in the primitive mantle normalized multi-element plots and the rare earth element pattern of the TL, similar to the global CAL average trend, including Eastern Dharwar Craton lamprophyres. Our findings provide substantial petrological and geochemical constraints on petrogenesis and geodynamics. However, the geodynamic trigger that generated CAL magmatism and its role in Cu–Au metallogeny in the WBC, Central India, is presently indistinct in the absence of isotopic studies. Nevertheless, the lamprophyre dyke is emplaced close to the Cu–(Au) deposit at Thanewasna. |
---|---|
ISSN: | 0305-8719 2041-4927 |
DOI: | 10.1144/SP513-2020-258 |