Gneiss Dome Formation in the Himalaya and southern Tibet

Gneiss domes in the Himalaya and southern Tibet record processes of crustal thickening, metamorphism, melting, deformation and exhumation during the convergence between the Indian and Eurasian plates. We review two types of gneiss domes: North Himalayan gneiss domes (NHGD) and later domes formed by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jessup, Micah J., Langille, Jackie M., Diedesch, Timothy F., Cottle, John M.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gneiss domes in the Himalaya and southern Tibet record processes of crustal thickening, metamorphism, melting, deformation and exhumation during the convergence between the Indian and Eurasian plates. We review two types of gneiss domes: North Himalayan gneiss domes (NHGD) and later domes formed by orogen-parallel extension. Located in the southern Tibetan Plateau, the NHGD are cored by granite and gneiss, and mantled by the Tethyan sedimentary sequence. The footwall of these were extruded southwards from beneath the Tibetan Plateau and subsequently warped into a domal shape. The second class of domes were formed during displacement on normal-sense shear zones and detachments that accommodated orogen-parallel extension during the Late Miocene. In some cases, formation of these domes involved an early stage of southwards-directed extrusion prior to doming. We review evidence for orogen-parallel extension to provide context for the formation of these gneiss domes. Compilations of pressure–temperature–time–deformation data and temperature–time paths indicate differences between dome types, and we accordingly propose new terminology. Type 1 domes are characterized by doming as an artefact of post-high-temperature exhumation processes in the Middle Miocene. Type 2 domes formed in response to exhumation during orogen-parallel extension in the Late Miocene that potentially post-dates south-directed extrusion.
ISSN:0305-8719
2041-4927
DOI:10.1144/SP483.15