Origin and evolution of microporosity in packstones and grainstones in a Lower Cretaceous carbonate reservoir, United Arab Emirates

Microporosity in carbonate reservoirs is generated by the complex interplay between depositional and diagenetic processes. This petrographical, SEM, fluid-inclusion and isotopic study of a Lower Cretaceous carbonate reservoir, Abu Dhabi, UAE, revealed that: (1) micritization of ooids and skeletal fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological Society special publication 2018-01, Vol.435 (1), p.47-66
Hauptverfasser: Morad, Daniel, Paganoni, Matteo, Al Harthi, Amena, Morad, Sadoon, Ceriani, Andrea, Mansurbeg, Howri, Al Suwaidi, Aisha, Al-Aasm, Ihsan S., Ehrenberg, Stephen N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microporosity in carbonate reservoirs is generated by the complex interplay between depositional and diagenetic processes. This petrographical, SEM, fluid-inclusion and isotopic study of a Lower Cretaceous carbonate reservoir, Abu Dhabi, UAE, revealed that: (1) micritization of ooids and skeletal fragments, which resulted in spheroidal (rounded) micrite, accounts for most microporosity in peloidal packstones and grainstones; and (2) transformation of spheroidal micrite into subhedral/euhedral micrite and microspar, known as aggrading neomorphism, could happen via precipitation of syntaxial calcite overgrowths around micrite (micro-overgrowths) and not only, as suggested previously in the literature, by recrystallization involving the dissolution (of micrite) and reprecipitation (of microspar). Precipitation of calcite cement around micrite (i.e. destruction of microporosity) is more extensive in the water zone than in the oil zone, which is possibly contributing to the lower porosity and permeability of the carbonate reservoir in the water zone. Similarity in bulk oxygen isotopic values of micritized packstones and grainstones in the water and oil zones (average δ18OV-PDB = −7.2‰ and −7.8‰, respectively) is attributed to: (1) a small difference in temperatures between the crest (oil zone) and the flanks (water zone); and (2) calcite precipitation around micrite occurred prior and subsequent to oil emplacement. Bulk carbon and strontium isotopic compositions of micritized packstones and grainstones in the water and oil zones (average δ13CV-PDB = +3.7‰ and average 87Sr/86Sr ratios = 0.707469) indicate that calcite cement was derived from marine porewaters and/or dissolution of the host limestones. The minimum formation temperatures of bulk micrite/microspar, which are inferred based on paragenetic relationships, fluid-inclusion microthermometry and oxygen isotope data, are around 58-78°C.
ISSN:0305-8719
2041-4927
DOI:10.1144/SP435.20