No-Ghost Theorem for Neveu-Schwarz String in 0-Picture via Similarity Transformation

A proof of the no-ghost theorem for Neveu-Schwarz string in 0-picture is outlined in a manner using a similarity transformation. It is shown that a nontrivial metric consistent with the BRST cohomology is needed to define a positive semidefinite norm in the physical Hilbert space. The one-to-one cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress of theoretical physics. Supplement 2011-01, Vol.188, p.254-262
Hauptverfasser: Kohriki, Maiko, Kunitomo, Hiroshi, Murata, Masaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A proof of the no-ghost theorem for Neveu-Schwarz string in 0-picture is outlined in a manner using a similarity transformation. It is shown that a nontrivial metric consistent with the BRST cohomology is needed to define a positive semidefinite norm in the physical Hilbert space. The one-to-one correspondence between physical states in 0-picture and those in the conventional (−1)-picture are confirmed. As a by-product, we find a new inverse picture-changing operator, which is noncovariant but has nonsingular operator product with itself. A possibility to construct a new gauge-invariant superstring field theory is discussed.
ISSN:0375-9687
DOI:10.1143/PTPS.188.254