Comparison of the emission wavelengths by a single fluorescent dye on in vivo 3-photon imaging of mouse brains
Multiphoton microscopy (MPM) is a powerful imaging technology for brain research. The imaging depth in MPM is partly determined by emission wavelength of fluorescent labels. It has been demonstrated that a longer emission wavelength is favorable for signal detection as imaging depth increases. Howev...
Gespeichert in:
Veröffentlicht in: | Journal of innovative optical health science 2023-11, Vol.16 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiphoton microscopy (MPM) is a powerful imaging technology for brain research. The imaging depth in MPM is partly determined by emission wavelength of fluorescent labels. It has been demonstrated that a longer emission wavelength is favorable for signal detection as imaging depth increases. However, there has been no comparison with near-infrared (NIR) emission. In order to quantitatively analyze the effect of emission wavelength on 3-photon imaging of mouse brains in vivo, we utilize the same excitation wavelength to excite a single fluorescent dye and simultaneously collect NIR and orange-red emission fluorescence at 828
nm and 620
nm, respectively. Both experimental and simulation results show that as the imaging depth increases, NIR emission decays less than orange-red fluorescent emission. These results show that it is preferable to shift the emission wavelength to NIR to enable more efficient signal collection deep in the brain. |
---|---|
ISSN: | 1793-5458 1793-7205 |
DOI: | 10.1142/S1793545823400023 |