A pointwise estimate for pseudo-differential operators
Let T a be a pseudo-differential operator defined by the symbol a ∈ S ϱ , δ − n ( 1 − ϱ ) / 2 with 0 < ϱ ≤ 1 , 0 ≤ δ < 1 . It is shown that if δ ≤ 1 + ϱ 2 , then the operator satisfies the following pointwise estimate: ( T a u ) ♯ ( x ) ≲ M ( | u | 2 ) 1 / 2 ( x ) for all x ∈ ℝ n and all Schwa...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical sciences 2023-08, Vol.13 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
T
a
be a pseudo-differential operator defined by the symbol
a
∈
S
ϱ
,
δ
−
n
(
1
−
ϱ
)
/
2
with
0
<
ϱ
≤
1
,
0
≤
δ
<
1
. It is shown that if
δ
≤
1
+
ϱ
2
, then the operator satisfies the following pointwise estimate:
(
T
a
u
)
♯
(
x
)
≲
M
(
|
u
|
2
)
1
/
2
(
x
)
for all
x
∈
ℝ
n
and all Schwartz function
u
.
Here,
u
♯
denotes the John-Nirenberg sharp function of
u
and
M
stands for the Hardy–Littlewood maximal operator. |
---|---|
ISSN: | 1664-3607 1664-3615 |
DOI: | 10.1142/S1664360722500011 |