Analytical periodic motions in a parametrically excited, nonlinear rotating blade
The stability and bifurcation analyses of periodic motions in a rotating blade subject to a torsional excitation are investigated. For high speed rotations, cubic geometric nonlinearity and gyroscopic effects of the rotating blade are considered. From the Galerkin method, the partial differential eq...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2013-09, Vol.222 (7), p.1707-1731 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stability and bifurcation analyses of periodic motions in a rotating blade subject to a torsional excitation are investigated. For high speed rotations, cubic geometric nonlinearity and gyroscopic effects of the rotating blade are considered. From the Galerkin method, the partial differential equation of the nonlinear rotating blade is simplified to the ordinary differential equations, and periodic motions and stability of the rotating blade are studied by the generalized harmonic balance method. The analytical and numerical results of periodic solutions are compared. The rich dynamics and co-existing periodic solutions of the nonlinear rotating blades are investigated. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjst/e2013-01957-1 |