Coulomb heating behavior of fast light diclusters thorough the Si ⟨ 110 ⟩ direction: influence of the mean charge state
In this work we report on the results for the Coulomb heating of H + 2 , B + 2 and C + 2 diclusters traveling in Si 〈 110 ⟩ direction covering an energy range from 200 keV/ion to 2400 keV/ion. Those results were obtained by combining the Rutherford backscattering spectrometry (RBS) and the particle...
Gespeichert in:
Veröffentlicht in: | The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2014, Vol.68 (1), Article 1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we report on the results for the Coulomb heating of H
+
2
, B
+
2
and C
+
2
diclusters traveling in Si 〈 110 ⟩ direction covering an energy range from 200 keV/ion to 2400 keV/ion. Those results were obtained by combining the Rutherford backscattering spectrometry (RBS) and the particle induced X-ray emission (PIXE) techniques. By comparing the present results to those obtained previously for ions traveling in the narrower Si ⟨ 100 ⟩ channel, several common features are observed for the Coulomb heating values; especially, they follow a linear relationship as a function of the stored potential per ion. However, at variance with previous results, it is shown that the use of a Dirac-Hartree-Fock-Slater (DHFS) potential based on the ion mean charge states in amorphous targets leads to a considerable disagreement between the Coulomb heating values and the expected potential energies stored in the dicluster prior to the Coulomb explosion. In order to investigate this problem, a numerical procedure was developed in order to calculate the mean charge state values for ions traveling under channeling conditions. The use of the resulting charge states led to a linear relationship between the Coulomb heating values and the stored potential energy per ion of the diclusters. Moreover, the Coulomb heating/stored potential energy ratio amounts to about 2/3, which is in full agreement with those results obtained for the Si ⟨ 100 ⟩ direction. |
---|---|
ISSN: | 1434-6060 1434-6079 |
DOI: | 10.1140/epjd/e2013-40528-0 |