Coherent population trapping and strong electromagnetically induced transparency resonances on the D1 line of potassium

In this paper we report the first experimental observation of coherent population trapping (CPT) in thermal potassium vapor in a three levels Λ scheme. We demonstrate that K presents the advantage of a reduced modulation frequency with a large resonance contrast (up to 40%), in comparison to similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009, Vol.53 (2), p.153-161
Hauptverfasser: Gozzini, S., Cartaleva, S., Lucchesini, A., Marinelli, C., Marmugi, L., Slavov, D., Karaulanov, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we report the first experimental observation of coherent population trapping (CPT) in thermal potassium vapor in a three levels Λ scheme. We demonstrate that K presents the advantage of a reduced modulation frequency with a large resonance contrast (up to 40%), in comparison to similar approaches with other alkalis. We report also the first evidence of electromagnetically induced transparency (EIT) resonances in K in the so called Hanle configuration. We tested different kinds of cells, demonstrating strong enhancement of the resonance contrast and amplitude for antirelaxation coated and buffered cells containing K vapor: resonance contrast up to 90% (for coated cells) and 65% (for buffered cells) is achieved with a linewidth of about 13 mG, while under similar conditions, the EIT resonance contrast in Cs vapor buffered by Ar gas is about 1%. Such relevant improvement is due to the reduced optical pumping in K, because of the overlapping of the hyperfine levels Doppler profiles, which does not occur in the case of Rb and Cs vapor. For this reason, K can be considered very promising for further CPT and EIT applications, especially for those where optical pumping losses represent a major limiting factor, such as light slowing and magnetometry.
ISSN:1434-6060
1434-6079
DOI:10.1140/epjd/e2009-00126-5