The importance of non-local shadowing for the topography evolution of a-C:H films grown by toluene based plasma enhanced chemical vapor deposition
The topography evolution of hydrogenated diamond-like carbon coatings deposited through toluene based capacitively coupled plasma enhanced chemical vapor deposition has been studied experimentally and with continuum growth models. The experimentally observed mound formation and surprisingly large gr...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2009-05, Vol.69 (2), p.187-194 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The topography evolution of hydrogenated diamond-like carbon coatings deposited through toluene based capacitively coupled plasma enhanced chemical vapor deposition has been studied experimentally and with continuum growth models. The experimentally observed mound formation and surprisingly large growth exponents (β≈ 0.9±0.1) cannot be reproduced by familiar local stochastic differential equations that are successfully used for other thin film deposition techniques. Here we introduce a novel numerical approach to simulate a continuum growth model that takes into account non-local shadowing effects. We show that the major characteristics of the experimentally observed topography evolution can be accurately represented by this model. |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2009-00131-6 |