Firing activity of complex space-clamped FitzHugh-Nagumo neural networks

. We investigate how firing activity of complex neural networks depends on the random long-range connections and coupling strength. Network elements are described by excitable space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2008-05, Vol.63 (2), p.279-282
Hauptverfasser: Wei, D. Q., Luo, X. S., Zou, Y. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. We investigate how firing activity of complex neural networks depends on the random long-range connections and coupling strength. Network elements are described by excitable space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength C, there exists a critical fraction of random connections (or randomness) p * , such that if p > p * the firing neurons, which are absent in the nearest-neighbor network, occur. The firing activity becomes more frequent as randomness p is further increased. On the other hand, when the p is smaller, there are no active neurons in network, no matter what the value of C is. For a given larger p, there exist optimal coupling strength levels, where firing activity reaches its maximum. To the best of our knowledge, this is a novel mechanism for the emergence of firing activity in neurons.
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/e2008-00227-5