Three particles in a finite volume: The breakdown of spherical symmetry

Lattice simulations of light nuclei necessarily take place in finite volumes, thus affecting their infrared properties. These effects can be addressed in a model-independent manner using Effective Field Theories. We study the model case of three identical bosons (mass m with resonant two-body intera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2012-07, Vol.48 (7), Article 93
Hauptverfasser: Kreuzer, S., Grießhammer, H. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lattice simulations of light nuclei necessarily take place in finite volumes, thus affecting their infrared properties. These effects can be addressed in a model-independent manner using Effective Field Theories. We study the model case of three identical bosons (mass m with resonant two-body interactions in a cubic box with periodic boundary conditions, which can also be generalized to the three-nucleon system in a straightforward manner. Our results allow for the removal of finite-volume effects from lattice results as well as the determination of infinite-volume scattering parameters from the volume dependence of the spectrum. We study the volume dependence of several states below the break-up threshold, spanning one order of magnitude in the binding energy in the infinite volume, for box side lengths L between the two-body scattering length a and L = 0.25 a . For example, a state with a three-body energy of −3/( ma 2 ) in the infinite volume has been shifted to −10/( ma 2 ) at L = a . Special emphasis is put on the consequences of the breakdown of spherical symmetry and several ways to perturbatively treat the ensuing partial-wave admixtures. We find their contributions to be on the sub-percent level compared to the strong volume dependence of the S -wave component. For shallow bound states, we find a transition to boson-diboson scattering behavior when decreasing the size of the finite volume.
ISSN:1434-6001
1434-601X
DOI:10.1140/epja/i2012-12093-6