Immunological detection of changes in genomic DNA methylation during early zebrafish development

DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome 2007-08, Vol.50 (8), p.778-785
Hauptverfasser: MacKay, Amy B, Mhanni, Aizeddin A, McGowan, Ross A, Krone, Patrick H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DNA methylation reprogramming, the erasure of DNA methylation patterns shortly after fertilization and their reestablishment during subsequent early development, is essential for proper mammalian embryogenesis. In contrast, the importance of this process in the development of non-mammalian vertebrates such as fish is less clear. Indeed, whether or not any widespread changes in DNA methylation occur at all during cleavage and blastula stages of fish in a fashion similar to that shown in mammals has remained controversial. Here we have addressed this issue by applying the techniques of Southwestern immunoblotting and immunohistochemistry with an anti-5-methylcytosine antibody to the examination of DNA methylation in early zebrafish embryos. These techniques have recently been utilized to demonstrate that development-specific changes in genomic DNA methylation also occur in Drosophila melanogaster and Dictyostelium discoideum , both organisms for which DNA methylation was previously not thought to occur. Our data demonstrate that genome-wide changes in DNA methylation occur during early zebrafish development. Although zebrafish sperm DNA is strongly methylated, the zebrafish genome is not detectably methylated through cleavage and early blastula stages but is heavily remethylated in blastula and early gastrula stages.
ISSN:0831-2796
1480-3321
DOI:10.1139/G07-055