INF-SUP STABLE FINITE ELEMENTS ON BARYCENTRIC REFINEMENTS PRODUCING DIVERGENCE-FREE APPROXIMATIONS IN ARBITRARY DIMENSIONS
We construct several stable finite element pairs for the Stokes problem on barycentric refinements in arbitrary dimensions. A key feature of the spaces is that the divergence maps the discrete velocity space onto the discrete pressure space; thus, when applied to models of incompressible flows, the...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2018-01, Vol.56 (5), p.2826-2844 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct several stable finite element pairs for the Stokes problem on barycentric refinements in arbitrary dimensions. A key feature of the spaces is that the divergence maps the discrete velocity space onto the discrete pressure space; thus, when applied to models of incompressible flows, the pairs yield divergence-free velocity approximations. The key result is a local inf-sup stability that holds for any dimension and for any polynomial degree. With this result, we construct global divergence-free and stable pairs in arbitrary dimension and for any polynomial degree. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/17M1153467 |