INF-SUP STABLE FINITE ELEMENTS ON BARYCENTRIC REFINEMENTS PRODUCING DIVERGENCE-FREE APPROXIMATIONS IN ARBITRARY DIMENSIONS

We construct several stable finite element pairs for the Stokes problem on barycentric refinements in arbitrary dimensions. A key feature of the spaces is that the divergence maps the discrete velocity space onto the discrete pressure space; thus, when applied to models of incompressible flows, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2018-01, Vol.56 (5), p.2826-2844
Hauptverfasser: GUZMÁN, JOHNNY, NEILAN, MICHAEL
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct several stable finite element pairs for the Stokes problem on barycentric refinements in arbitrary dimensions. A key feature of the spaces is that the divergence maps the discrete velocity space onto the discrete pressure space; thus, when applied to models of incompressible flows, the pairs yield divergence-free velocity approximations. The key result is a local inf-sup stability that holds for any dimension and for any polynomial degree. With this result, we construct global divergence-free and stable pairs in arbitrary dimension and for any polynomial degree.
ISSN:0036-1429
1095-7170
DOI:10.1137/17M1153467