AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES

Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P₁ approximations for the displacement and lowest-order Raviart-Thomas approximations for the stres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2018-01, Vol.56 (1), p.428-447
Hauptverfasser: BRINGMANN, P., CARSTENSEN, C., STARKE, G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 1
container_start_page 428
container_title SIAM journal on numerical analysis
container_volume 56
creator BRINGMANN, P.
CARSTENSEN, C.
STARKE, G.
description Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P₁ approximations for the displacement and lowest-order Raviart-Thomas approximations for the stress variables. This forms a competitive discretization in particular in three-dimensional linear elasticity with traction boundary conditions although the stress approximation does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining algorithm based on separate marking and exact solve with some novel explicit a posteriori error estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial input parameters Θ for the Dörfler marking and κ for the separate marking as well as the equivalence constants in the asymptotic convergence rates do not degenerate as the Lamé parameter λ tends to ∞.
doi_str_mv 10.1137/16M1083797
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1137_16M1083797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45048544</jstor_id><sourcerecordid>45048544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-c4eb3e0a807cd827c65d5b55bcac6b2236889626b32d7e85cd9a60071374363e3</originalsourceid><addsrcrecordid>eNpFkM1Lw0AUxBdRMFYv3oU9C9G335vjEjdtIB-apBVPIdmkYFEq2V763xup6GkY5jcP3iB0S-CBEKYeicwJaKYidYYCApEIFVFwjgIAJkPCaXSJrrzfwew1YQGqTIHNk3lu0o3FmTV1E9Yva1PZGic2x0lZ4SwtrKmwzeYwjdPmDb-mzQqXcyc3GY7LYmOrpS1iiyvT2PoaXWy7Dz_e_OoCrRPbxKswK5dpbLLQUcEOoeNjz0boNCg3aKqcFIPohehd52RPKZNaR5LKntFBjVq4IeokgJrf5EyykS3Q_emum_beT-O2_ZreP7vp2BJof9Zo_9eY4bsTvPOH_fRHcgFcC87ZN8dZUvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES</title><source>SIAM Journals</source><source>JSTOR</source><source>JSTOR Mathematics &amp; Statistics</source><creator>BRINGMANN, P. ; CARSTENSEN, C. ; STARKE, G.</creator><creatorcontrib>BRINGMANN, P. ; CARSTENSEN, C. ; STARKE, G.</creatorcontrib><description>Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P₁ approximations for the displacement and lowest-order Raviart-Thomas approximations for the stress variables. This forms a competitive discretization in particular in three-dimensional linear elasticity with traction boundary conditions although the stress approximation does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining algorithm based on separate marking and exact solve with some novel explicit a posteriori error estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial input parameters Θ for the Dörfler marking and κ for the separate marking as well as the equivalence constants in the asymptotic convergence rates do not degenerate as the Lamé parameter λ tends to ∞.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/16M1083797</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2018-01, Vol.56 (1), p.428-447</ispartof><rights>Copyright ©2018 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-c4eb3e0a807cd827c65d5b55bcac6b2236889626b32d7e85cd9a60071374363e3</citedby><cites>FETCH-LOGICAL-c253t-c4eb3e0a807cd827c65d5b55bcac6b2236889626b32d7e85cd9a60071374363e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45048544$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45048544$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>BRINGMANN, P.</creatorcontrib><creatorcontrib>CARSTENSEN, C.</creatorcontrib><creatorcontrib>STARKE, G.</creatorcontrib><title>AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES</title><title>SIAM journal on numerical analysis</title><description>Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P₁ approximations for the displacement and lowest-order Raviart-Thomas approximations for the stress variables. This forms a competitive discretization in particular in three-dimensional linear elasticity with traction boundary conditions although the stress approximation does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining algorithm based on separate marking and exact solve with some novel explicit a posteriori error estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial input parameters Θ for the Dörfler marking and κ for the separate marking as well as the equivalence constants in the asymptotic convergence rates do not degenerate as the Lamé parameter λ tends to ∞.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AUxBdRMFYv3oU9C9G335vjEjdtIB-apBVPIdmkYFEq2V763xup6GkY5jcP3iB0S-CBEKYeicwJaKYidYYCApEIFVFwjgIAJkPCaXSJrrzfwew1YQGqTIHNk3lu0o3FmTV1E9Yva1PZGic2x0lZ4SwtrKmwzeYwjdPmDb-mzQqXcyc3GY7LYmOrpS1iiyvT2PoaXWy7Dz_e_OoCrRPbxKswK5dpbLLQUcEOoeNjz0boNCg3aKqcFIPohehd52RPKZNaR5LKntFBjVq4IeokgJrf5EyykS3Q_emum_beT-O2_ZreP7vp2BJof9Zo_9eY4bsTvPOH_fRHcgFcC87ZN8dZUvg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>BRINGMANN, P.</creator><creator>CARSTENSEN, C.</creator><creator>STARKE, G.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180101</creationdate><title>AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES</title><author>BRINGMANN, P. ; CARSTENSEN, C. ; STARKE, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-c4eb3e0a807cd827c65d5b55bcac6b2236889626b32d7e85cd9a60071374363e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRINGMANN, P.</creatorcontrib><creatorcontrib>CARSTENSEN, C.</creatorcontrib><creatorcontrib>STARKE, G.</creatorcontrib><collection>CrossRef</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRINGMANN, P.</au><au>CARSTENSEN, C.</au><au>STARKE, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>428</spage><epage>447</epage><pages>428-447</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P₁ approximations for the displacement and lowest-order Raviart-Thomas approximations for the stress variables. This forms a competitive discretization in particular in three-dimensional linear elasticity with traction boundary conditions although the stress approximation does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining algorithm based on separate marking and exact solve with some novel explicit a posteriori error estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial input parameters Θ for the Dörfler marking and κ for the separate marking as well as the equivalence constants in the asymptotic convergence rates do not degenerate as the Lamé parameter λ tends to ∞.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/16M1083797</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2018-01, Vol.56 (1), p.428-447
issn 0036-1429
1095-7170
language eng
recordid cdi_crossref_primary_10_1137_16M1083797
source SIAM Journals; JSTOR; JSTOR Mathematics & Statistics
title AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ADAPTIVE%20LEAST-SQUARES%20FEM%20FOR%20LINEAR%20ELASTICITY%20WITH%20OPTIMAL%20CONVERGENCE%20RATES&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=BRINGMANN,%20P.&rft.date=2018-01-01&rft.volume=56&rft.issue=1&rft.spage=428&rft.epage=447&rft.pages=428-447&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/16M1083797&rft_dat=%3Cjstor_cross%3E45048544%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=45048544&rfr_iscdi=true