AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES
Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P₁ approximations for the displacement and lowest-order Raviart-Thomas approximations for the stres...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2018-01, Vol.56 (1), p.428-447 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P₁ approximations for the displacement and lowest-order Raviart-Thomas approximations for the stress variables. This forms a competitive discretization in particular in three-dimensional linear elasticity with traction boundary conditions although the stress approximation does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining algorithm based on separate marking and exact solve with some novel explicit a posteriori error estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial input parameters Θ for the Dörfler marking and κ for the separate marking as well as the equivalence constants in the asymptotic convergence rates do not degenerate as the Lamé parameter λ tends to ∞. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/16M1083797 |