p-Adic Dynamical Systems of the Function ax/x2 + a

We show that any (1, 2)-rational function with a unique fixed point is topologically conjugate to a (2, 2)-rational function or to the function f ( x ) = ax / x 2 + a. The case (2, 2) was studied in our previous paper, here we study the dynamical systems generated by the function f on the set of com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2019, Vol.11 (1), p.77-87
Hauptverfasser: Rozikov, U. A., Sattarov, I. A., Yam, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that any (1, 2)-rational function with a unique fixed point is topologically conjugate to a (2, 2)-rational function or to the function f ( x ) = ax / x 2 + a. The case (2, 2) was studied in our previous paper, here we study the dynamical systems generated by the function f on the set of complex p -adic field ℂ p . We show that the unique fixed point is indifferent and therefore the convergence of the trajectories is not the typical case for the dynamical systems. We construct the corresponding Siegel disk of these dynamical systems. We determine a sufficiently small set containing the set of limit points. It is given all possible invariant spheres.We show that the p -adic dynamical system reduced on each invariant sphere is not ergodic with respect to Haar measure on the set of p -adic numbers ℚ p .Moreover some periodic orbits of the system are investigated.
ISSN:2070-0466
2070-0474
DOI:10.1134/S2070046619010059