On a nonlinear p-adic dynamical system

We investigate the behavior of trajectories of a (3, 2)-rational p -adic dynamical system in the complex p -adic field ℂ p , when there exists a unique fixed point x 0 . We study this p -adic dynamical system by dynamics of real radiuses of balls (with the center at the fixed point x 0 ). We show th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2014, Vol.6 (1), p.54-65
Hauptverfasser: Rozikov, U. A., Sattarov, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the behavior of trajectories of a (3, 2)-rational p -adic dynamical system in the complex p -adic field ℂ p , when there exists a unique fixed point x 0 . We study this p -adic dynamical system by dynamics of real radiuses of balls (with the center at the fixed point x 0 ). We show that there exists a radius r depending on parameters of the rational function such that: when x 0 is an attracting point then the trajectory of an inner point from the ball U r ( x 0 ) goes to x 0 and each sphere with a radius > r (with the center at x 0 ) is invariant; When x 0 is a repeller point then the trajectory of an inner point from a ball U r ( x 0 ) goes forward to the sphere S r ( x 0 ). Once the trajectory reaches the sphere, in the next step it either goes back to the interior of U r ( x 0 ) or stays in S r ( x 0 ) for some time and then goes back to the interior of the ball. As soon as the trajectory goes outside of U r ( x 0 ) it will stay (for all the rest of time) in the sphere (outside of U r ( x 0 )) that it reached first.
ISSN:2070-0466
2070-0474
DOI:10.1134/S207004661401004X