A family of highly stable second derivative block methods for stiff IVPs in ODEs
This paper considers a class of highly stable block methods for numerically solving initial value problems (IVPs) in ordinary differential equations (ODEs). The boundary locus of the proposed parallel one-block, r -output point algorithms shows that the new schemes are A -stable for output points r...
Gespeichert in:
Veröffentlicht in: | Numerical analysis and applications 2014, Vol.7 (1), p.57-69 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers a class of highly stable block methods for numerically solving initial value problems (IVPs) in ordinary differential equations (ODEs). The boundary locus of the proposed parallel one-block,
r
-output point algorithms shows that the new schemes are
A
-stable for output points
r
= 2(2)8 and
A
(
α
)-stable for output points
r
= 10(2)20, where
r
is the number of processors in a particular block method in the family. Numerical results of the block methods are compared with the second derivative linear multistep method in [8]. |
---|---|
ISSN: | 1995-4239 1995-4247 |
DOI: | 10.1134/S1995423914010066 |