On generalizations of ADS modules and rings

A rightmodule M over a ring R is said to be ADSif, for every decomposition M = S ⊕ T and every complement T ' of S , we have M = S ⊕ T '. In this article, we study and provide several new characterizations of new class of essential modules and generalization of ADS modules. We prove that M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2016-05, Vol.37 (3), p.323-332
1. Verfasser: Hai, P. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rightmodule M over a ring R is said to be ADSif, for every decomposition M = S ⊕ T and every complement T ' of S , we have M = S ⊕ T '. In this article, we study and provide several new characterizations of new class of essential modules and generalization of ADS modules. We prove that M is semisimple if and only if every module in σ[ M ] is generalized ADS if and only if every generalized ADS module in σ[ M ] is M -injective.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080216030227