On generalizations of ADS modules and rings
A rightmodule M over a ring R is said to be ADSif, for every decomposition M = S ⊕ T and every complement T ' of S , we have M = S ⊕ T '. In this article, we study and provide several new characterizations of new class of essential modules and generalization of ADS modules. We prove that M...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2016-05, Vol.37 (3), p.323-332 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A rightmodule
M
over a ring
R
is said to be ADSif, for every decomposition
M
=
S
⊕
T
and every complement
T
' of
S
, we have
M
=
S
⊕
T
'. In this article, we study and provide several new characterizations of new class of essential modules and generalization of ADS modules. We prove that
M
is semisimple if and only if every module in σ[
M
] is generalized ADS if and only if every generalized ADS module in σ[
M
] is
M
-injective. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080216030227 |